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At zero temperature, the 3-state antiferromagnetic Potts model on a square
lattice maps exactly onto a point of the 6-vertex model whose long-distance
behavior is equivalent to that of a free scalar boson. We point out that at
nonzero temperature there are two distinct types of excitation: vortices, which
are relevant with renormalization-group eigenvalue 1

2 ; and non-vortex unsatis-
fied bonds, which are strictly marginal and serve only to renormalize the stiff-
ness coefficient of the underlying free boson. Together these excitations lead to
an unusual form for the corrections to scaling: for example, the correlation
length diverges as b — J/kTQ. according to t ’ Ae2b(1+bbe−b+·· · ), where
b is a nonuniversal constant that may nevertheless be determined independently.
A similar result holds for the staggered susceptibility. These results are shown to
be consistent with the anomalous behavior found in the Monte Carlo simula-
tions of Ferreira and Sokal.

KEY WORDS: Antiferromagnetic Potts model; six-vertex model; height repre-
sentation; corrections to scaling; renormalization group.

1. INTRODUCTION

Corrections to scaling at continuous phase transitions have long been under-
stood within the framework of the renormalization group. (1) Irrelevant



operators give rise to power-law corrections to scaling in, for example, the
temperature-dependence of the correlation length, of the form

t ’ A |t|−n (1+C |t|w+·· · ) (1.1)

where w > 0 is a universal correction-to-scaling exponent, and A and C are
nonuniversal amplitudes. (For a critical point at temperature Tc ] 0, the
scaling variable t is conventionally defined by t3 T−Tc.) In the case of a
marginally irrelevant operator, both multiplicative and additive logarithmic
corrections can occur, typically of the form

t ’ A |t|−n (log |t|−1) n̄ 51+C log log |t|−1

log |t|−1
+CŒ

1
log |t|−1

+·· · 6 . (1.2)

However, it is possible for more exotic dependences to arise. This
paper considers just such an example, namely the antiferromagnetic 3-state
Potts model on a square lattice. This model has the Hamiltonian

H=J C
OijP
dsi , sj (1.3)

where the sum is over nearest-neighbor pairs of vertices on the square
lattice, at each of which is a degree of freedom si taking one of three
possible states. The coupling is antiferromagnetic, that is, J > 0.

One reason that this model is exotic is that its critical point occurs at
T=0. (2–9) Nevertheless, this is a bona fide critical point, exhibiting, for
example, power-law decay of the order-parameter correlation functions. At
nonzero temperature, these correlation functions decay exponentially with
a finite correlation length t. In the past there has been some confusion
concerning the correct choice of scaling variable at such zero-temperature
critical points; it does not necessarily correspond to setting Tc to zero in the
above definition of t (i.e., to taking t3 T). In fact, this question is
answered quite explicitly, at least for non-quantum critical points, by the
renormalization group: the space of scaling variables is the tangent space at
the fixed point to the manifold parametrized by the Boltzmann weights of
the model in question. In our case, the low-temperature configurations
correspond to modifying one of the ground states by allowing a nonzero
density of nearest-neighbor bonds where si=sj (we henceforth call these
unsatisfied bonds). Each unsatisfied bond occurs with Boltzmann weight e−b

(where b — J/kT), and therefore the correct scaling variable t should be
linear in e−b.

The other, more interesting, reason that this model is unusual is that, as
we shall discuss in detail in the next section, switching on the temperature
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excites not just one, but two, scaling operators. One of these operators
turns out to be relevant, with renormalization-group eigenvalue y=1

2

(hence scaling dimension x=2−y=3
2), corresponding to n=1/y=2, so

that the leading behavior of the correlation length is t3 (e−b)−n=e2b. The
other operator is marginal—not marginally irrelevant, but strictly marginal
in the sense that, taken alone, it would generate a line of fixed points with
continuously varying exponents. The main result of this marginal operator
is to give the exponent n in the foregoing expression an effective depen-
dence on the scaling variable w — e−b itself: thus we find that

t ’ A(e−b)−neff (e
−b) ’ Ae2b(1+bbe−b+·· · ) (1.4)

where b=dneff(w)/dw|w=0 is presumably nonuniversal. It turns out,
however, that in this model we can estimate the value of b by an indepen-
dent calculation. In particular, simple qualitative arguments show that
b < 0, so that the asymptotic value of t/e2b should be reached from below
as bQ. (and likewise for the staggered susceptibility).

Such an increase, following a minimum, was in fact found in extensive
Monte Carlo simulations of this model by Ferreira and Sokal. (10) These
authors attempted to fit their data with a variety of ‘‘standard’’ forms of
corrections to scaling, including logarithms. Though some of these Ansätze
gave reasonable fits, none had a plausible theoretical basis (see ref. 10,
Section 7.1 for detailed discussion). As we shall show in Section 4, the
anomalous behavior found by Ferreira and Sokal is consistent with the
unusual form (1.4) over its expected range of validity, when b is given the
value that we extract independently in Section 3.

Our ability to make such a theoretical analysis depends on a mapping
of the model at zero temperature to a discrete height model that can be
connected (via a nonrigorous but convincing renormalization-group
argument) to the continuum theory of a free scalar boson. (8, 11, 9) It is within
the height-model approach that we are able to disentangle the behavior at
nonzero temperature and argue that the two types of excitation, leading to
the unusual scaling form (1.4), are present.

The layout of this paper is as follows: In Section 2 we discuss the
mapping to a height model and make the important observation that in
this model (unlike some other models with zero-temperature critical points)
the height mapping is well-defined also at nonzero temperatures. It is then
straightforward to identify the two types of excitation in height-model
language. The most relevant excitation has the nature of a vortex within
the free-boson description, and standard Coulomb-gas methods then lead
to the prediction that n=2. The other type of excitation has zero vorticity
and, we argue, merely renormalizes the compactification radius (or stiffness
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coefficient) of the free field. However, this is not a rigorous argument, and
it is important to check it independently. This we do in Section 3, by a
direct numerical investigation of the modified height model in which only
excitations of the second type are allowed, that is, the vortices are
suppressed. In this case, the height model may be represented as a modified
vertex model, which we analyze using transfer matrices and finite-size
scaling. Our results show clearly that these excitations are indeed strictly
marginal: the modified vertex model is still critical and continues to have
the central charge c=1 characteristic of a free boson. We directly measure
the dependence of the stiffness coefficient on the fugacity w — e−b of the
excitations. In Section 4 we put these pieces of information together to
predict how the effective critical exponents like neff depend on e−b, and
hence extract the value of the parameter b in Eq. (1.4) for both the correla-
tion length and the susceptibility. Finally we compare these predictions
with the Monte Carlo data of Ferreira and Sokal. (10) In the Appendix we
show how various non-universal quantities arising from the first-order
effects of the non-vortex defects may be related to one another.

2. HEIGHT MODEL AND LOW-TEMPERATURE EXCITATIONS

It is convenient to label the Potts states si by the integers 0, 1, 2. The
vertices i of the square lattice are labeled by integer-valued coordinates
(mi, ni), and the lattice is divided into even and odd sublattices on which
mi+ni is even or odd, respectively. Let us introduce the variable gi —
1
2 [1−(−1)

mi+ni], which takes the values 0 or 1 according to whether i is on
the even or the odd sublattice. We then define height variables hi ¥ Z/6Z by

hi — 2si+3gi (mod 6), (2.1)

as illustrated in the table below:

Potts state Even Subl. Odd Subl.

0 0 3
1 2 5
2 4 1

This gives a 1–1 correspondence between configurations of the 3-state Potts
model and configurations of the height model satisfying the constraint that
hi is even (resp. odd) whenever i is on the even (resp. odd) sublattice. This
latter constraint may equivalently be imposed by fixing the height at the
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origin to be even and further demanding that heights on neighboring ver-
tices i and j satisfy

|hi−hj |=1 or 3 (mod 6). (2.2)

We then have si ] sj if and only if |hi−hj |=1(mod 6), and si=sj if and
only if |hi−hj |=3(mod 6).

Let us consider first the model at zero temperature. Then the only
allowed configurations are antiferromagnetic ground states (si ] sj for all
nearest-neighbor pairs i, j ); in the height model this corresponds to replac-
ing (2.2) by the more restrictive condition

|hi−hj |=1 (mod 6). (2.3)

It then follows that the height field hi ¥ Z/6Z can be ‘‘lifted’’ to a height
field h2i ¥ Z so that now the height difference across an edge is ±1 tout
court (not just mod 6): self-consistency is ensured (at least with free
boundary conditions) by noting that the change Dh2 around any plaquette
will be zero (if four numbers ±1 add up to 0 mod 6, they must necessarily
be two +1’s and two −1’s, hence add up to 0). Furthermore, this lifting is
unique up to an overall shift by a multiple of 6. In cylindrical or toroidal
boundary conditions, the height field h2i might fail to be globally well-
defined (i.e., it might have a nonzero tilt), but the gradient field Nh2 is still
well-defined and curl-free.

The restricted height model (2.3) can be equivalently be mapped onto
an arrow model on the dual lattice: we assign to each edge e of the dual
lattice, dual to the edge ij of the original lattice, the orientation obtained
by a +90° turn from the direction in which the height change is +1
(mod 6). This arrow field is simply the dual of the vector field Nh2; it is
therefore conserved at each vertex of the dual lattice. Each vertex of the
dual lattice thus has precisely two inward-pointing arrows and two
outward-pointing arrows, so that the allowed configurations of the arrows
at each vertex are precisely those of the 6-vertex model. (14) Moreover, the
Boltzmann weights are those of the symmetric point, i.e., all weights equal.
It is well known from the exact solution of the 6-vertex model (14) that this
point is critical.

As was pointed out by Henley, (8, 11) this criticality is quite easily
understood from the point of view of the renormalization group applied to
the lifted height model.5 It is reasonable to guess that the long-wavelength

5 One might ask why the RG has to be applied to the lifted (Z-valued) height model and not
to the original (Z/6Z-valued) height model. The answer is that the coarse-graining process
necessarily introduces fractional weights, which would cause ambiguity in R/6Z but which
give rise to a well-defined averaging operator in R.
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behavior of the lifted height model is controlled by an effective coarse-
grained Hamiltonian of the form

SG= F d2r 5K
2
(“h2)2−l cos(2ph2)6 (2.4)

where K is the stiffness constant. The gradient term in (2.4) takes into account
the entropy of small fluctuations around Henley’s ‘‘ideal states;’’ (12, 13, 8, 11, 9)

the second term is the so-called locking potential, which favors the heights
to take their values in Z. We then expect that there exists some constant Kr

such that for K <Kr (resp. K >Kr) the locking potential is irrelevant (resp.
relevant) in the renormalization-group sense. Thus, if K <Kr our surface
model is ‘‘rough’’ and its long-wavelength behavior can be described by a
massless Gaussian model:

O[h2(x)−h2(y)]2P ’
1
pK

log |x−y| (2.5)

for |x−y|± 1; in this case, the original zero-temperature spin system is
critical, and all its critical exponents can be determined in terms of the
single constant K. In particular, the scaling dimensions of spin-wave (or
vertex) operators e iah2(r) are given by

xa=a2/4pK. (2.6)

From (2.1) the staggered order parameter (−1)mi+ni e2psi/3 corresponds to
a=p/3, so that its correlation function decays with an exponent gstagg=
2xp/3=p/18K. By comparison with the exact result gstagg=

1
3 from the

6-vertex model, (5, 7) it follows that K must take the value p/6. At this value,
the locking potential cos(2ph2) has scaling dimension x2p=6, so that it is
indeed highly irrelevant. By the usual scaling law we then obtain the sus-
ceptibility exponent (c/n)stagg=2−gstagg=5/3.6

6 This value has been confirmed numerically by several authors. (15, 16, 9, 10)

Let us now consider the model at nonzero temperature: note that the
height model (2.1)/(2.2) continues to give a complete description. Nonzero
temperature amounts to allowing the height difference between neighboring
sites to take the value 3 (mod 6) as well as ±1 (mod 6): the former corre-
spond to unsatisfied bonds. Each unsatisfied bond will be weighted by e−b,
so that, at low temperature, the unsatisfied bonds will be very dilute. Let us
therefore consider first the effect of just one isolated unsatisfied bond. This
bond belongs to two neighboring plaquettes, and there are two cases to
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consider, according as the vorticities on those two plaquettes have (a)
opposite signs or (b) the same sign:

s=

2 1

0–0

2 1

s=

2 1

0–0

1 2

(a) (b)

(2.7)

where the unsatisfied bond is indicated with a dash. The corresponding
height configurations mod 6 are

h=

1 2

0–3

1 2

h=

1 2

0–3

5 4

(a) (b)

(2.8)

(here we have taken the center-left vertex to lie on the even sublattice). Let
us now ask whether these heights hi ¥ Z/6Z can be lifted to heights h2i ¥ Z
while satisfying the condition

|h2i−h2j |=1 or 3. (2.9)

This amounts to asking whether the bond in (2.8) with |hi−hj |=3 can be
assigned a sign consistent with that of the two adjacent plaquettes. In case
(a), the answer is yes; in case (b), the answer is no. We therefore call
situation (a) a non-vortex unsatisfied bond, and situation (b) a vortex (of
strength 6).

This situation can alternatively be viewed in the 6-vertex picture
(Fig. 1). The arrow dual to the unsatisfied bond may be thought of as an
arrow of strength 3, but of indeterminate sign. There are then two possible
ways in which this defect may be healed locally: either we can choose a
definite orientation for the triple arrow, and impose strict conservation at
the neighboring vertices, corresponding to the situation shown in Fig. 1a;
or we can relax this condition and allow a violation of arrow conservation
at one of the vertices, as in Fig. 1b. In the latter case there is a net arrow
flux of ±6 out of the region of the defect, and this will persist to larger
distances if there is strict conservation elsewhere.
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Fig. 1. Examples of the two types of defect: (a) non-vortex unsatisfied bond, and (b) vortex.
In both cases, two neighboring sites (labeled here by heights 0 and 3) are in the same Potts
state (here s=0). Case (a) is a local defect with finite relative entropy, while (b) corresponds
to a vortex in the 6-vertex model, with logarithmically diverging negative entropy.

Clearly this kind of defect has a topological nature: it corresponds to a
vortex (or antivortex) in which the height field changes by ±6 in encircling
the defect. Outside the core of the defect, the continuum description (2.4)
should still apply. Thus we may write h2(r) % (±6/2p) h+h2Œ, where h is the
polar angle and h2Œ has zero vorticity. Substituting into (2.4) we then find
that the defect has additional reduced free energy (i.e., negative entropy)

1
2
K 1 6

2p
22 F d2r/r2 ’ (9K/p) log(R/a) (2.10)

where we have introduced a short-distance cutoff a, and R is the size of the
system. Thus a single isolated vortex has zero probability of occurring.
However, configurations containing several vortices and antivortices with
zero total vorticity have a nonzero probability as RQ.. The scaling
dimension xV of a vortex operator may be determined (Ref. 17, p. 121)
from the power-law decay of the vortex-antivortex correlation function
(i.e., the partition function with a vortex-antivortex pair introduced) or,
more easily, directly from (2.10) as

xV=9K/p=3
2 (2.11)

at K=p/6. If the vortices are the most relevant perturbation at nonzero
temperature, which we shall argue is the case, then (2.11) leads to the
prediction n=1/yV=1/(2−xV)=2. Since the scaling variable t is pro-
portional to the fugacity e−b of the vortex, we predict that the correlation
length diverges as t3 (e−b)−n=e2b as bQ..

On the other hand, the non-vortex defect shown in Fig. 1a has finite
additional negative entropy. It may be viewed as a tightly bound pair of a
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vortex and antivortex of strength ±3. Thus, at large distances, it corre-
sponds to a dipole height field

h(r) ’ D
n · r
r2

(2.12)

where n is a unit lattice vector, and D is a non-universal constant whose
value is difficult to determine analytically, since the size of the vortex-
antivortex pair is of the order of the lattice spacing, at which scale the
continuum action (2.4) is inapplicable. (Nevertheless, in the Appendix we
show how the value of D may be related to other non-universal numbers
that we have measured directly.) The dipole field (2.12) gives an infrared-
finite but nonzero contribution to SG (of course the integral should still be
cut off at short distances: it diverges as a−2 and so is strongly dependent on
the precise form of the cutoff). The numerical value of this nonuniversal
constant will be measured in Section 3.

As already noted, the non-vortex defect has the property—at least in
the simple case when it is isolated—that it is possible to assign a definite
value +3 or −3 to the height change Dh2 along the defect edge in such a
way that the gradient field Nh2 remains curl-free, i.e., such that the height
variables are lifted locally to Z. (In the 6-vertex picture, this means that it
is possible to assign a definite arrow value +3 or −3 to the defect edge in
such a way that strict conservation holds.) Even when the defects are not
isolated, but form finite clusters, as long as there is no net flux of arrows
from each cluster, it should still be possible to lift the height variables
locally to Z in a unique manner, except possibly in the core of the cluster.
(An example of ambiguity within the core of the cluster is shown in
Fig. 2.) We therefore expect that non-vortex defects do not disturb the
renormalization-group flow of the model towards a free boson theory as
in (2.4). On the other hand, there is no reason to suppose that a model
with a finite density of defects will renormalize onto the same value of the
stiffness constant K as is obtained in the absence of defects; rather, we
expect that K will depend on the fugacity w=e−b of the non-vortex
defects. It is the purpose of the next section to test this hypothesis
numerically and to estimate the dependence Keff(w) in the model with
vortices suppressed.

In general, the renormalization-group flows in a model with a scale-
dependent stiffness constant K(a) and vortex fugacity y(a) are well-
known (18) to be (for a vortex of strength 6)

dy/da=(2−9K/p) y+O(y3) (2.13a)

dK−1/da=Ay2+O(y4) (2.13b)
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Fig. 2. An extended non-vortex defect that corresponds to a well-defined set of Potts states
(first label) but for which the heights mod 6 (second label, in parentheses) cannot be lifted
uniquely everywhere from Z/6Z to Z, since the height at the center could correspond to either
+3 or −3. Equivalently, there are two flux-conserving ways of assigning triple arrows to the
unsatisfied bonds (encircling the center plaquette clockwise or anticlockwise). Nevertheless,
sufficiently far away from the defect there is no such ambiguity in lifting to Z.

The coefficient of y in the first equation reflects the fact that our vortices
have scaling dimension xV=9K/p. The coefficient A in the second equa-
tion is nonuniversal (since it depends on the normalization of y) but of
order unity; it is independent of K because the vortex-vortex interaction is
3K, and the screening term from tightly bound pairs is 3K2, so that
dK/da3K2y2.

Defining u=p/6−K, the RG flow (2.13) may be rewritten as

dy/da=(12+9u/p) y+O(y
3) (2.14a)

du/da=AŒy2+O(y4, y2u) (2.14b)

where AŒ=(p/6)2 A. Away from the point where u=−p/18 (where the
vortices become marginal), these equations may be rewritten in the stan-
dard way (19) in terms of non-linear scaling variables ũ=u+O(y2) and
ỹ=y+O(y3) so that the flow equations take the simple form

dỹ/da=(12+9ũ/p) ỹ (2.15a)

dũ/da=0 (2.15b)

with no higher-order terms. These equations are to be integrated with the
initial conditions y(0)=w=e−b and K(0)=Keff(w), hence ỹ(0)=y(0)+
O(y(0)3)=w+O(w3) and ũ(0)=u(0)+O(y(0)2)=p

6−Keff(w)+O(w2)=
−K −eff (0)w+O(w

2). Thus ũ(a)=ũ(0) and

ỹ(a)=[w+O(w3)] exp [(12+9ũ(0)/p) a]. (2.16)
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The correlation length satisfies the homogeneous renormalization-
group equation

t(ũ(0), ỹ(0))=ea t(ũ(a), ỹ(a)). (2.17)

Assuming in the standard way that t=t0=O(1) when y(a)=O(1) [i.e.,
when ỹ(a)=O(1)] then gives the prediction

t(b) ’ t0[w+O(w3)]−1/(
1
2+9ũ/p) (2.18a)

’ t0[w+O(w3)]−[2+(36/p) K
−

eff (0) w+O(w
2)] (2.18b)

=t0 exp[2b+bbe−b+O(be−2b)] (2.18c)

=t0 e2b[1+bbe−b+
1
2 b

2b2e−2b+O(be−2b)] (2.18d)

where b=(36/p) K −eff (0). In writing the above we have been careful to
show where the neglected higher-order terms enter. Simple qualitative
arguments (see Section 4) show that K −eff (0) < 0, so this implies that the
asymptotic value of t(b)/e2b is attained from below.

Next we turn to the staggered susceptibility. A staggered field hstagg

satisfies the renormalization-group equation

dhstagg/da=(2−xp/3) hstagg+O(h
3
stagg) (2.19)

where, as discussed above, xp/3=p/36K. As usual, the singular part of the
reduced free energy per unit area transforms according to f(ũ(0), ỹ(0),
hstagg(0))=e−2af(ũ(a), ỹ(a), hstagg(a)), so that the staggered susceptibility
qstagg ’ “

2f/“h2stagg satisfies

qstagg(ũ(0), ỹ(0))=exp 5F a
0
[2−2xp/3(aŒ)] daŒ6 qstagg(ũ(a), ỹ(a)) (2.20)

where the integral in the exponential is

F
a

0
[53−(2ũ/p)+O(ỹ(aŒ)

2)] daŒ ’ (53−2ũ/p) a+const+O(w2). (2.21)

Choosing a as before and assuming that at this scale qstagg=q0=O(1) then
gives

qstagg ’ q0 [w+O(w2)]−(
5
3 −2ũ/p)/(

1
2+9ũ/p)+O(w

2) (2.22)
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where, once again, ũ=−K −eff (0)w+O(w
2). Equation (2.22) then simplifies

to the final result

qstagg(b) ’ q0 exp [103 b+bŒbe
−b+O(be−2b)] (2.23a)

=q0 e
10
3 b[1+bŒbe−b+1

2 bŒ
2b2e−2b+O(be−2b)] (2.23b)

where bŒ=(64/p) K −eff (0)=
16
9 b. Thus the asymptotic limit of qstagg(b)/e

10
3 b

is also attained from below.

3. EXTRACTING THE STIFFNESS CONSTANT

In this section we analyze a model in which the vortex excitations
present in the full model are deliberately suppressed, in order to understand
the effects of the (less relevant) non-vortex defects like those shown in
Fig. 1a. As discussed in the previous section, this may be achieved in the
height model by allowing height changes Dh2 of ±3 as well as ±1, while
continuing to insist that the gradient field Nh2 be strictly curl-free. Edges
with Dh2=±3 will be assigned a fugacity w — e−b. Equivalently, we may
work in the dual arrow model: edges in this model are allowed to carry flux
±3 as well as ±1, and we impose strict flux conservation at the vertices.
The partition function of the arrow model is therefore

Z= C
G

wN3 , (3.1)

where N3 is the number of triple arrows, and the sum ;G extends over all
possible flux-conserving configurations of the 44-vertex model just defined.7

7 Barbero et al. (20) recently studied a closely related 14-vertex model, in which zero or one edges
of strength ±3 (but not two or four such edges) are allowed to be incident on each vertex. For
small fugacity w, this model should be essentially equivalent to our model; in particular, we
expect it to remain in the ‘‘rough’’ phase for small w, with a continuum limit given by the
massless free field (2.4) with a stiffness constant K that depends on w. However, this model
cannot stay critical for allw > 0, since in the limitwQ. it freezes into one of a finite number of
ground states (for example, vertices 11 and 16 of (Ref. 20, Fig. 1) on even and odd sublattices,
respectively). It would be interesting to understand what happens in-between. Unfortunately,
the study of Barbero et al. is limited to the region 0 [ w [ 1 (corresponding to bE3 \ 0 in their
notation; we are at the symmetric point bE=0). We thank Giorgio Mazzeo for bringing this
paper to our attention.

We wish to test the hypothesis that the continuum limit of the statistical
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model defined by (3.1) is a free-field theory with action given by (2.4), with
a stiffness constant K that depends on w. In this section we shall see how it
is possible to verify this hypothesis numerically, and at the same time extract
quite accurate values ofKeff(w) as well as its first few derivatives atw=0.

Imagine defining the model (3.1) on a cylinder of circumference L,
with periodic boundary conditions in the transverse direction. Clearly, due
to the flux conservation it splits up in a direct sum of theories with a fixed
net arrow current Q in the longitudinal direction. The corresponding height
field h2(r) — h2(x, t) is multiple-valued in the transverse coordinate x, with
‘‘tilt’’ Q: h2(x+L, t)=h2(x, t)+Q. Such a constant tilt can, however, easily
be gauged away by setting

h2(x, t)=Qx/L+h1(x, t) , (3.2)

where now h1(x+L, t)=h1(x, t). For Q/L° 1 the field h1 can be assumed to
describe the Q=0 sector of the original model. Therefore, inserting (3.2)
into (2.4), we see that a nonzero current Q simply shifts the action (free
energy) per unit area by an amount

Df(Q)=
Keff(w)
2

Q2

L2 . (3.3)

This is in turn related to the shift in the logarithm of the largest eigenvalue
of the corresponding transfer matrix, which can then be used to check the
above hypothesis and to extract numerical values of Keff(w).

To this end we have constructed the transfer matrix of the model (3.1)
in the 4L-dimensional basis associated with all possible arrow configura-
tions for a layer of L vertical bonds. As mentioned above, the transfer
matrix is block-diagonal according to the value of Q. Furthermore, Q must
have the same parity as L. Using standard sparse-matrix techniques we
have been able to diagonalize the various sectors of this matrix for widths
up to Lmax=10. Due to parity effects we limit the discussion to even L in
the following, although odd L yield compatible results.

To check that our model is indeed described by a Gaussian theory for
all w \ 0, we begin by examining the central charge. This can be extracted
from the finite-size scaling of the free energy per unit area (21)

f0(L)=f0(.)−
pc
6L2+·· · , (3.4)
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where f0(L)=−1
L log l0(L) and l0(L) is the largest eigenvalue of the

transfer matrix in the Q=0 sector. As usual, the convergence can be sped
up by including a nonuniversal 1/L4 correction, so that three consecutive
system sizes are needed to fit the above formula. (22) The resulting finite-size
estimates for c as a function of w are shown in Table I. As expected, they
strongly suggest the w-independent value c=1 in the LQ. limit, thus
corroborating the analytical arguments given in Section 2. (For reasons
that we do not fully understand, the finite-size effects are particularly
strong at w % 2. This would be an interesting question to investigate
further.)

We now turn our attention to the extraction of the stiffness constant
Keff(w). For each L [ Lmax we have verified that the Q-dependence of the
free energy is indeed of the form (3.3) for Q° L. However, as the quadra-
tic behavior must (and does) saturate when Q becomes comparable to L,
we have based our estimates of Keff(w) on only the two lowest permissible
values of Q. For even L these values must be even, due to the parity
observation made above; this suggests that we focus on Q=0 and Q=2.
But at this point special attention must be paid to the limit wQ., in
which only triple arrows are allowed, so that the model reduces to the usual
6-vertex model with triple-size heights. Such configurations are incompa-
tible with a total flux of Q=2. Thus, for generic (i.e., non-small) values of
w we should restrict attention to values of Q that are multiples of 6, e.g.,
Q=0 and Q=6.

The values of Keff(w) extracted by fitting (3.3) at Q=0 and Q=6 are
displayed in Table II for selected values of w and L. We observe a leading
finite-size correction in 1/L2, reflecting the 1/L4 correction present in c.
Thus, fitting each pair of successive system sizes to the form Keff(L)=
Keff(.)− const/L2, we obtain two independent estimates of Keff(.); and
judging the error bar from the small residual size dependence of these

Table I. Effective Central Charge c as a Function of the

Boltzmann Weight w. The Three-Point Fits to (3.4) Based

on System Sizes L, L−2 and L−4 are Labeled as c(L)

w c(6) c(8) c(10)

0.0 0.9751 0.9885 0.9958
0.5 1.0079 0.9971 0.9990
1.0 0.9430 0.9812 0.9968
1.5 1.3336 1.0448 0.9407
2.0 1.6105 1.3984 1.2046
3.0 0.9486 0.9335 0.9771

10.0 0.9618 0.9882
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Table II. Finite-Size Estimates for the Stiffness Constant Keff(w) as well as Their

Extrapolation to L=/

w K(L=6) K(L=8) K(L=10) Extrapolation

0.0 0.505099 0.512823 0.516574 0.52359(1) % p/6.000
0.5 0.207033 0.205920 0.205408 0.20450(1) % p/15.4
1.0 0.125262 0.125426 0.125496 0.12562(2) % p/25.0
1.5 0.091195 0.092921 0.093571 0.0947(4) % p/33.2
2.0 0.064168 0.064762 0.064972 0.0654(2) % p/48.1
3.0 0.057232 0.058096 0.058511 0.05925(5) % p/53.0

estimates we obtain the final result shown in the rightmost column of
Table II. For w=0 we find excellent agreement with the exact result for the
6-vertex model, Keff(0)=p/6. For wQ. the triple-height model should
have correlations (2.5) nine times as large, hence a stiffness constant one-
ninth as large, i.e., Keff(.)=p/54; this too is confirmed numerically.
In-between, Keff(w) is a monotonically decreasing function of w; this makes
sense heuristically, because allowing Dh2=±3 increases the variance of the
distribution of nearest-neighbor height differences, which should lead (or
so one naturally expects) to a larger variance also for the long-distance
height differences, which by (2.5) are proportional to K−1.

Exactly at w=0 the above remark that the Q=2 sector introduces
frustration does not apply. The evaluation of K and its first few derivatives
at w=0 can therefore be based on the Q=0 and Q=2 sectors, yielding a
better precision. To perform the derivatives, we simply numerically dif-
ferentiate the free energies (3.3). The results for KŒ(0) and Kœ(0) are given
in Table III.

Our transfer-matrix results can also be used to compute the average
energy density, given here simply as the probability of having a triple
arrow, e(w)=ON3P/N. Using (3.1) we have e(w)=−w df/dw, and based
on the first two derivatives of the free energy we find

e(w)=0.2179(2) w+0.696(1) w2+O(w3) (3.5)

in the model with vortices suppressed. This can be compared with the
Monte Carlo results of Ferreira and Sokal for the full 3-state Potts anti-
ferromagnet (i.e., with vortices included), based on a fit to the low-tem-
perature data (Ref. 10, Section 4.3 and Fig. 13):

ePotts(w)=0.21777w+1.65303w2+O(w3). (3.6)

The fact that the leading terms of the two expansions agree could easily
have been anticipated, since vortices necessarily come in pairs, and thus
enter only at order O(w2).
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Table III. Finite-Size Estimates and Extrapolations for the Derivatives dK/dw |w=0

and d2K/dw 2 |w=0

Quantity L=4 L=6 L=8 L=10 Extrapolation

KŒ(0) −0.330292 −0.452044 −0.502110 −0.527432 −0.58 (1)
Kœ(0) −3.10237 −2.69860 −2.49302 −2.37655 −2.1 (1)

4. COMPARISON WITH MONTE CARLO RESULTS

Putting together the results of Sections 2 and 3, we deduce the theore-
tical predictions

log t(b)=2b+log t0+bbe−b+O(be−2b) (4.1)

log q(b)=10
3 b+log q0+bŒbe−b+O(be−2b) (4.2)

where the nonuniversal constants b and bŒ take the values

b=
36
p
K −eff (0) % −6.65(11) (4.3)

bŒ=
64
p
K −eff (0) % −11.82(20) (4.4)

and we write q as a shorthand for qstagg. We are now ready to compare these
predictions with the Monte Carlo data of Ferreira and Sokal (Ref. 10, Table
4,Lmin=128).

Let us begin with the correlation length. In Fig. 3 we plot t(b)/e2b

versus b; the rise at b N 3.4 (corresponding to t N 75) is seen clearly. In
Fig. 4 we replot the same data as log t(b)−2b versus be−b; there is a lot of
curvature, and it is unfeasible to extract reliable estimates of the limiting
slope, but the data for be−b M 0.031 (corresponding to b N 5.1 and t N 2600)
are at least compatible with the predicted slope −6.65, provided that we
choose an intercept log t0=−2.11(2). In Fig. 5 we plot log t(b)−2b+
6.65be−b versus be−b; for modest values of b the corrections to scaling are
actually stronger than in Fig. 4 (!), but for large b they are weaker and it is
at least plausible that the curve is asymptotically horizontal. Finally, in
Fig. 6 we plot log t(b)−2b+6.65be−b versus be−2b; now the curve is com-
patible with linearity over the much wider range be−2b M 0.0019 (corre-
sponding to b N 3.8 or t N 170), and we estimate an intercept log t0=
−2.12(1) and an asymptotic slopeC=123(4).
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Fig. 3. t(b)/e2b versus b. Error bars are one standard deviation, and are most likely
overestimates (Ref. 10, Section 4.1.1).

Fig. 4. log t(b)−2b versus be−b. Straight line is log t(b)−2b=−2.11−6.65be−b.
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Fig. 5. log t(b)−2b+6.65be−b versus be−b. Straight line is log t(b)−2b+6.65be−b=−2.11.

Fig. 6. log t(b)−2b+6.65be−b versus be−2b. Straight line is log t(b)−2b+6.65be−b=
−2.12+123be−2b.
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Next we analyze the staggered susceptibility. We omit the plot of q(b)/
e (10/3) b versus b; it looks a lot like Fig. 3. In Fig. 7 we plot log q(b)− 10

3 b

versus be−b; once again there is a lot of curvature, and it is unfeasible to
extract reliable estimates of the limiting slope, but the data for be−b M 0.031
are compatible with the predicted slope −11.82, provided that we choose
an intercept log q0=−2.52(3). In Fig. 8 we plot log q(b)− 10

3 b+11.82be
−b

versus be−b; for modest values of b the corrections to scaling are once
again stronger than in Fig. 7, but for large b they are weaker and it is at
least plausible that the curve is asymptotically horizontal. Finally, in Fig. 9
we plot log q(b)− 10

3 b+11.82be
−b versus be−2b; now the curve is compa-

tible with linearity over the much wider range be−2b M 0.0016 (corresponding
to b N 3.9 or t N 210), and we estimate an intercept log q0=−2.54(1) and an
asymptotic slopeCŒ=232(8).

In conclusion, the available Monte Carlo data are compatible with the
theoretical predictions (4.1)/(4.2), although the evidence for these predic-
tions—and in particular for the predicted values (4.3)/(4.4) of the non-
universal constants b and bŒ—is admittedly less than overwhelming. Our

Fig. 7. log q(b)− 10
3 b versus be−b. Straight line is log q(b)− 10

3 b=−2.52−11.82be−b.
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Fig. 8. log q(b)− 10
3 b+11.82be

−b versus be−b. Straight line is log q(b)− 10
3 b+11.82be

−b=
−2.52.

Fig. 9. log q(b)− 10
3 b+11.82be

−b versus be−2b. Straight line is log q(b)− 10
3 b+11.82be

−b=
−2.54+232be−2b.
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analysis does, in any case, give a simple explanation of why the limiting
values of t(b)/e2b and q(b)/e(10/3) b are approached from below. It would
be useful to obtain higher-precision Monte Carlo data at correlation
lengths t N 1000 (corresponding to b N 4.6) in order to make a better test
of our theoretical predictions. It is curious that the asymptotic behavior in
this model is attained only at rather large correlation lengths.

APPENDIX. RELATIONS BETWEEN NON-UNIVERSAL CONSTANTS

In this appendix we show how dK/dw|w=0 is related to two other non-
universal constants: D in (2.12) and c1=de/dw|w=0 in (3.5)/(3.6).

In the Coulomb gas picture of vortices interacting with a strength
3K, the tightly-bound vortex-antivortex pairs of vorticity ±3 (Fig. 1a) act
to screen this interaction, thus decreasing the effective K. A very similar
effect happens in the Coulomb gas picture of the XY model, and we show
that a calculation similar to that employed in the Kosterlitz renormaliza-
tion-group approach (18) may be used here to estimate the shift in K, to first
order in w=e−b.

Rather than evaluating the interaction between two vortices, it is
simpler to consider the correction to the height correlation function, which,
in the absence of defects, has the form

O[h(r1)−h(r2)]2P ’ (pK)−1 log |r1− r2 |/a+const. (A1)

Introducing defects of the form

hdef(r)=D
n · (r− r0)
|r− r0 |2

(A2)

where n is a unit lattice vector, the first-order correction to the Oh(r1) h(r2)P
term in (A1) is

e−be−SdefD2 C
r0 , n

(n · (r1− r0))(n · (r2− r0))
|r1− r0 |2 |r2− r0 |2

(A3)

where Sdef is the action (relative negative entropy) of the defect. Summing
over the four orientations of n turns the numerator into 2(r1− r0) · (r2− r0).
In the continuum limit, (A3) may be written

2e−be−SdefD2 F
(r1− r0) · (r2− r0)
|r1− r0 |2 |r2− r0 |2

d2r0 (A4)
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Apart from pieces which contribute to terms independent of |r1− r2 |,
the numerator in (A4) may be rewritten as − 1

2 [(r1− r0)−(r2− r0)]
2=

−1
2 (r1− r2)

2, so that (A4) becomes

−e−be−SdefD2 F
|r1− r2 |2

|r1− r0 |2 |r2− r0 |2
d2r0 ’ −e−be−SdefD2 · 4p log |r1− r2 |/a

(A5)

(This last result may be most easily seen by evaluating the dependence on
the cut-off a close to r0 ’ r1 and r0 ’ r2.) From (A5) may be read off the
first-order correction to the stiffness constant

dK/K2=−2p ·D2 · 4pe−be−Sdef . (A6)

Setting K=p/6 thus gives

dK=−(2p4/9) ·D2 · e−be−Sdef . (A7)

On the other hand, the first-order correction of such defects to the free
energy per vertex is

df=−4e−be−Sdef=−c1e−b (A8)

where c1 is the number appearing in (3.5)/(3.6) and numerically determined
to be % 0.218. This gives the value dK/dw|w=0=−(p4/18) D2c1, leading
to the estimate D % 0.70. This is in rough agreement with various rather
crude estimates which may be made on the assumption that the effective
Hamiltonian SG is valid down to the lattice scale.
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17. J. L. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University

Press, Cambridge, 1996).
18. J. M. Kosterlitz, J. Phys. C 7:1046 (1974).
19. F. J. Wegner, in Phase Transitions and Critical Phenomena, Vol. 6, C. Domb and

M. S. Green, eds. (Academic Press, London, 1976).
20. M. Barbero, G. Mazzeo, and A. C. Levi, Surface Science 377–379:519 (1997).
21. H. W. Blöte, J. L. Cardy, and M. P. Nightingale, Phys. Rev. Lett. 56:742 (1986);

I. Affleck, Phys. Rev. Lett. 56:746 (1986).
22. J. L. Jacobsen and J. Cardy, Nucl. Phys. B 515 [FS], 701 (1998), cond-mat/9711279.

Unusual Corrections to Scaling 47


	1. INTRODUCTION
	2. HEIGHT MODEL AND LOW-TEMPERATURE EXCITATIONS
	3. EXTRACTING THE STIFFNESS CONSTANT
	4. COMPARISON WITH MONTE CARLO RESULTS
	APPENDIX. RELATIONS BETWEEN NON-UNIVERSAL CONSTANTS
	ACKNOWLEDGMENTS

